

Abstracts

Multiple Quantum Frequency Conversion in Extended Interaction Structures

D.J. Scalapino, A. Vassiliadis and R.N. Wilson. "Multiple Quantum Frequency Conversion in Extended Interaction Structures." 1964 PTGMTT International Symposium Program and Digest 64.1 (1964 [MWSYM]): 103-106.

In 1959, E.T. Jaynes suggested that resonant, multiquantum processes could provide an efficient method of frequency conversion at high frequency and high powers. This conversion is mediated by a gas or solid composed of molecules having a strong electric-dipole absorption at a frequency Omega. Such a system can resonantly absorb energy from an electromagnetic field at all odd subharmonic of Omega. The omega/spl ap/ Omega/(2n + 1) subharmonic absorption is said to correspond to a 2n + 1 quantum process. The excited (driven) molecular system has electric dipole moments at all odd harmonics of the drive omega. The resonant dipole moment at a frequency (2n + 1)omega /spl ap/ Omega generates an electromagnetic field resulting in the frequency conversion process proposed by Jaynes. Here we report theoretical calculations and experimental observation of this multiquantum frequency conversion in a traveling-wave structure.

[Return to main document.](#)